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eigenvalue error estimate, which was established by Osborn, a new expansion of eigenvalue
error is obtained. Many achievements, which are about the asymptotic expansions of
finite element methods of differential operator eigenvalue problems, are brought into the

KeV & dg framework of functional analysis. (b) The Richardson extrapolation of nonconforming finite
Spectral approximation elements for multiple eigenvalues and splitting extrapolation of finite elements based on
Multiple eigenvalue domain decomposition of non-selfadjoint differential operators for multiple eigenvalues are
Finite element achieved. In addition, numerical examples are provided to support the theoretical analysis.
Asymptotic expansion © 2013 IMACS. Published by Elsevier B.V. All rights reserved.

Splitting extrapolation

1. Introduction

The Richardson extrapolation is a well-known technique to construct high-order methods in numerical analysis. It is
applicable to many problems, including ordinary or partial differential equations. All these applications are based on the
existence of an error expansion for the discrete approximations in a single mesh parameter (see [16]). To produce more
accurate approximations for partial differential equations, in the last 30 years, many scholars studied the Richardson extrap-
olation of finite element methods, e.g. see [1,2,4,9,10,13,24,25,28,33] and the references therein.

As for multidimensional problems, the Richardson extrapolation is costly since it considers just a single parameter. So,
the splitting extrapolation, which is based on multivariate expansions with several mesh parameters, appears. Since 1980s,
the splitting extrapolation has been developed widely in the numerical analysis community. The splitting extrapolation is a
better technique to deal with the so-called curse of dimensionality and is also a highly parallel algorithm (see [20] and the
book review [31]). It is especially important that the splitting extrapolation is also applied to the finite element methods,
see [7,14,19,27,28], etc.

During the development of the extrapolation of finite element methods, the extrapolation for eigenvalue problems is an
attractive issue, e.g. see [5,15,18,19,21,22,24,25,27,28,34]. Especially, [5] studied successfully the extrapolation of conforming
finite elements for multiple eigenvalues of selfadjoint differential operator. However, to the best of our knowledge, there has
no research on nonconforming finite elements extrapolations for multiple eigenvalues and the finite element extrapolations
for multiple eigenvalues of non-selfadjoint differential operator. [22,24] discussed the extrapolation of nonconforming finite
element eigenvalues, e.g., the asymptotic expansion of the EQ'¢ element
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AMp—A=— hi + /(alay) + 9 (h?) (1.1)

was proved Wherei is the limit ofJ h, the eigenfunction corresponding to Aj, (see Theorem 3.1 in [22]). It is an important
work. By using this expansion one can extrapolate the simple eigenvalue to obtain high-precision eigenvalues. However,
in the case of multiple eigenvalues, from the spectral approximation theory we know that when h changes, the exact
eigenfunction J which the finite element eigenfunctioni h approximates to also changes (e.g., see Theorem 7.4 in [3]), thus,

is related to h in the expansion. So it cannot be guaranteed that we use this expansion directly to extrapolate and get
high-precision eigenvalues. As for the extrapolation of finite elements for non-selfadjoint differential operator eigenvalue
problems, including the splitting extrapolation, [27] and [28] proved the asymptotic expansion for simple eigenvalues (see
Theorem 2 in [27])

Ah—kztﬂig yh? + 9 (hg), (12)
i=1

where B ) is independent of h. By this expansion the splitting extrapolation for simple eigenvalues can be achieved. But
for multiple eigenvalues, Biy) is related to h in (1.2). When the ascent of A is larger than 1, not only is Biy) related to h
but also the accuracy of A relates to the ascent which was pointed out in [28]. So we cannot use this expansion directly to
get high-precision eigenvalues. The simple eigenvalue is a strong condition since the eigenvalue of non-selfadjoint problems
is not simple in general and its ascent is probably larger than 1. This paper aims to study the extrapolation of finite elements
for multiple eigenvalues including the case that the ascent is equal to or larger than 1.

We develop the previous corresponding investigations and obtain the main results which are in Sections 3 and 4 in this
paper. Special works of this paper are as follows:

(a) In Section 3, we provide an eigenvalue error expansion (see (3.1)). This expansion is a simple extension of the estimate
which was established by Osborn (see (2.4) in this paper). In many applications the first term on the right hand side of
(3.1)/(2.4) is the dominant term and the second term is of higher order than the first one. The error is determined by
the first term. Compared with (2.4), the advantage of (3.1) is that it indicates that the dominant term is effectively the
size of the error. It is this feature that leads to the asymptotic formula for the error. Thus we bring the extrapolation of
finite elements for differential operator eigenvalue problems into the framework of functional analysis.

In Section 4, the asymptotic expansion of finite elements for differential operator eige‘nvalue problems is discussed by
using Theorem 3.1. In Section 4.1 we give and prove the asymptotic expansions of EQ |t element for multiple eigenval-
ues. In Section 4.2, for second-order non-selfadjoint differential operator eigenvalue problems, the splitting extrapolation
based on domain decomposition is discussed. We throw off the assumption that A is a simple eigenvalue in Theorem 2
in [27] and realize the splitting extrapolation of finite elements for multiple eigenvalues.

—~
=3
-

Besides, in Section 5, some numerical experiments are reported to support our theory.
In this paper, C denotes a positive constant independent of h, which may stand for different values at its different
occurrences.

2. Preliminaries

Let X be a separable complex Banach space with norm | - || and conjugate pairs (-,-), respectively. In this section, let
T :X — X be a nonzero compact linear operator, T : X — X and {Tp}p-o be a family of compact operators, and || T, —
T|| — 0 (h — 0). Consider the following eigenvalue problem:
TJ =1y (2.1)
and its approximation
Ty n =iy n- (2.2)

We use the eigenpairs of (2.2) to approximate to those of (2.1).
[12] has proved the following Lemma 2.1.

Lemma2.1.Lg {u;}be® & ﬁ “f, n& ‘ zer* eigk vay e J'f T, each 1_ieacc “ & g Jriqic Y. T heee
AT "‘*; o frh‘*m cidk vay € T, 4’"64? oac“ygt fqitl-i"-'tf }ﬂ i xee
Win—>pnj (h—0), j=1,2,.... (23)

Set Aj = ulj Ajn= ﬁ In some papers wj and wjp are called eigenvalues, and A and Ajp are called characteristic
values. In our paper all of these are called eigenvalues.
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Let pu be the I-th eigenvalue of (2.1) with algebraic multiplicity ..Uk = ppt1 =+ = My 1 Then wy is also the
eigenvalue of T’ with algebraic multiplicity .,iwhere T’ is the Banach adjoint of T. Let py be the K-th eigenvalue of (2.2)
and set flgp = 1_2’;;;?1;”’,1. Denote by p(T) the resolvent set of T, and o (T) the spectrum of T.

Let I" be a closed Jordan curve enclosing wr and A be a domain enclosed by I', A\ur C p(T). Let h be sufficiently
small, then I" C p(T}y). The definitions of spectral projection and the ascent are as follows (see [3,8,29]):

Spectral projection. Denote R,(T) = (z — T)~ !, R,(Ty) = (z — Tp)~!, define
E=E(un) =5~ / R(T)dz,
im
r

-1
Ep=Ep(up) = % / R;(Tp)dz.
I

We call E the spectral projection associated with T and pup, and Ej the spectral projection associated with T, and the
eigenvalues of T, which converge to . Let T,; be the Banach adjoint of Tj. Similarly, we can define the spectral projection
E’ associated with T" and u, and E; associated with T; and the eigenvalues of T, which converge to [y

Ascent, generalized eigenvector. There exists the smallest integer «, called the ascent of pur — T, such that the null space
Ier (e — T)¥) = Fer ((upe — T)*+1). The vectors in Fer ((upe — T)*) are called generalized eigenvectors of T corresponding
to pup. Likewise, the ascent and generalized eigenvectors of pjp — T, s — T’ and ppp — T,’I can be defined.

We denote R(E), R(Ep), R(E') and R(E}) as the image spaces of E, Ey, E’ and E;, respectively. Then R(E
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< E" g h()sup[Re(T) [T = Twlaco | sup R 11

= ERS,:(Th)(T Tr)Re(T)Azi f

2im d(r[) —

<C|(T = Twlre |1 £1-
Thus we get
I(En — B)lreey | < C|(T = T)lreey| = 0 (h— 0). (33)

For any f € R(E), E f =0 implies

IfIl = IEf — Enfll < | (En — E)lreey|IIFl = O (h— 0),

ie, f=0.S0 Ep|g) : R(E) = R(Ep) is one -to-one. Since d? R(Ep) =di, R(E)= ~eEnlr(E) 1s onto. Hence (Ex|r(g))™ —1 exists
and is defined on R(Ey), and we write E_ for (Eplre)) ™ T for simplicity. For sufﬁc1ently small h and f € R(E) with || f| =1,
from (3.3) we have

—

1= IEnfIl = IEf I = I En 1l < [ E = En)lre || < 5-

Hence ||Ep f] > %||f||. This implies E;l is bounded, and for sufficiently small h, E;l is uniformly bounded in h. Define
Th=E; " ThEnlreE). (3.4)

Clearly,

Th:R(E) — R(E).

Since R(Ej) is the invariant subspace of Ty, EhE’l is the identical operator on R(Ej) and E’lE,1 is the identical operator
on R(E), thus we have J(Th) ={Khy - s Lt 1 n}. And we can see that the algebraic and geometric mult1p11c1ty of any
Win as an eigenvalue of Th is equal to its algebralc and geometric multiplicity as an elgenvalue of Th write T = TIr(E),

by the spectral decomposition theorem we have o= (e, ..., ey .;1}- Thus the traces of T and Th can be obtained as
follows, respectively,

¢ race T= chbic
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(= Twr. 5] =(T0; — By Tubre. )
= (E; En(T — Tw)gj. @)
T = T )+ (B B = )T = T ) o

Let Ly = Eh_lEh, and it can be easily proved that L, is the projection operator from X to R(E) along Fer (E;). Hence L;1 is
the projection operator from X’ to Fer (Ep)* = R(E},) along R(E)* = Ier (E). Thus

((Lh = DT = Th)gj, Eqel) = ((T = Tw)gj, (L, — 1) Exj) =0,

noting that Eko} = go}, we get
! / / I

((Lh = DT = Th)gj. @}) = ((Ln — D(T = Twej. (E' — E})@)- (3.7)
From (3.7), the boundedness of Ly, and (3.3) (applied to T’ and T;) we have

(L = D(T = Te;, )] < (sgp ILh — 1||) 1T = Twlree || (E" = E) g, Nl - €5

< C”(T = Tw)lre) ” “ (T/ - Tl/1)|R(E’) ” (3.8)

Finally, denote R = 1.‘2’;:’;.—71 ((Lp — (T = Tp)e;, (p;.); by using (3.5), (3.6) and (3.8), we obtain the desired result. O
Remark 3.1. Note that in (3.1) {(pj};§+ 7! is a basis of R(E) and {go}};z+ 7! is the dual basis in R(E"), and it can be seen from

the proof that they are all independent of h. Therefore, based on Theorem 3.1, we can realize the Richardson extrapolation
of multiple eigenvalues and the splitting extrapolation based on domain decomposition in the next section.

4. Finite element extrapolations of differential operator eigenvalue problems

In Section 4.1, based on Theorem 3.1 and [22], the Richardson extrapolations of the nonconforming element for multiple
eigenvalues are discussed. In Section 4.2, by using Theorem 3.1 and [27,28], the splitting extrapolations based on domain
decomposition for multiple eigenvalues are studied. For a general theory of finite element methods we refer to [3,6,11,32].

41. ThE § & j‘rxi K fee‘ei it eira[“qﬂ .f’x“i[jeeig‘ vay e

Let H-«£2) be a Sobolev space with norm || - ||>‘2, and Hé(.Q) be the subspace of H!(£2) consisting of those functions
which vanish on 9£2.
Consider the eigenvalue problem: Find a real number
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Then the nonconforming Eer‘t element approximation corresponding to (4.1) is: Find a real number A, € R, 0 FJh € sh,
such that

an{ n.v)=Abg n.v). Vvesh (4.2)

Here, the eigenpair (A o of (4.2) approximates the eigenpair (Ay) of (4.1).
In order to discuss the error estimates, we will need the form of operator equation of (4.1) and (4.2). Define the operators
T,Th:L2(82) = La(82):

a(Tf,v)=b(f,v), V¥feLyR), Vv e Hy(),
an(Tnf,v) =b(f,v), VfeLy(2), Vvesh
Set X =1L1y(82), (-,-) =b(-,-) and || - || = || - [, = ~/b(-,-). It can be easily seen that (4.1) and (4.2) have the equivalent
operator fo‘rms (2.1) and (2.2), respectively, T and T, are selfadjoint completely continuous operators (see for example [36]).
By the EQ |t element error estimate of the source problem corresponding to (4.1) (see [24,26]), we can deduce that |T —
Thll — 0 (h — 0).
Let Ax be the [-th eigenvalue of (4.1) with algebraic multiplicity o= Mgl = = Ay al i;g = Z’]+,;T1 k] W
Based on [22] we obtain the following:

Theorem 4.1. L¢ R(E) C H>(£2). TH& frt h& § & f‘rxf gEQ’]‘r a9 L I hereh“d“he a‘gx Ef‘t iceXEj ﬂ ‘ft he err® *f ip:

I+., h2 2
+ h;
A]{h—)»](——— /312822(/)]‘(/)1-{-7.9(}14), (4.3)
“F j=k o
_ 8 a2 _ 22
uIereB,-_B—)é_,a dz,1_12
Proof. Note that pr= 5=, flxp = T , T and Ty are selfadjoint operators; from (3.1) and (3.2) we have
A l+
Alp — )u](
L R Z b((T — Tw)pj, ¢j) +
AeAlep St
2
IRI<C[(T = Twlre| - (44)

From [3] and [22], we can see that

Ain — 2 <Ch?%, (T = Twlree | < Ch

Then (4.4) can be written as

I+ .,T‘l
Meh — o= =2 Y b((T = T)pj. @;) + v (h*). (4.5)
T j=k

4
According to the error estimate of the nonconforming EQ}t element, we have

Ib(Tej — Thej, @j — @in)| <T@ — Thejliblle; — @jnlls < Ch

and

1 4
b(InTe; — Thej, @jn) = ah(IhT(/)] Th@j. @jn) + 9 (h*),
J
where [, is the interpolation operator of EQ’;r element. Thus

b((T — Th@j, ¢j) =b(Tej — Thej, ¢j — @jn) +b(Tej — Ik T@j, @jn) +bUnTej — Thej, @jn)

1 1
= ;b(% —Ihpj, @) + ;ah(IhT‘Pj — Thej, @jn) + 0 (h?)
j j

1
= f(b(fﬂj —Ihgj, @jn) +an(InTej — Tej, ©jn)
j

+an(Tej — Thpj, @jn) + 0 (h*). (4.6)
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From (3.1) in [22], we can see that

an(UnTj —Tej, @jn) =0
From (3.3) in [22], it follows that

2
1

an(T@; — Thj, jn) = — 0203T@ipjn + 9 (M)IT@;ls N9 allh

0202¢0; + 9 (W) 1@jlis@j nlla-

2
h2+h§/
2

From (3.9) in [22], we can derive
b(@j — Ingj, @jn) = (h*).
Substituting the above three equalities into (4.6) we have

hZ
3A2

b((T—Th)q)j,(pj)= /3132901%"‘19(’1 )

2

Substituting the above equality into (4.5) we get (4.3). O

Algorithm 1 (The Richard § exra[“({lf Jrnata j‘r\it g9 €4

Step 1. Under the partition with the mesh parameters hq, h2, solving (4.2) we can get ):,,

Step 2. Under the partition with the mesh parameters h21 , =, solving (4.2) we can get k,, b

Step 3. Compute the value of the extrapolation

4. 1.
§A,{,% - 5)»1(,]-,.

)\"( h -
Corollary 4.1. § der he & dj & ‘fThe‘rei 4.1, here l*)d
Ny — me=0(h*). (4.7)

Proof. From (4.3), it can be seen that
I+ .=1 2 2
~ 1 L h] h2 242 4
)\]4_171 _)\’{:__,FZ §((?> +<7) >/3132(/)j§0j+l9(h )
> j=I o
Combining the above equality and (4.3), we obtain (4.7). O

Eq. (4.7) indicates that the nonconforming EQ'l‘r element extrapolations for multiple eigenvalues achieve the accuracy
order ¢ (h%).

Remark 4.1. Thanks to [22], we can also study multiple eigenvalues extrapolations of the nonconforming Q"r
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where

ag ’V)=/<Zau(x)ai a]v+Zb(X)ai vty )

i,j=1
stV)ZfP(X)J \7dx.
2

Assume that aij(x), C(x)’ p(x) € Loo($2), bi(x) € W1,00(82), = (X1, ey }(1), and there exists a positive constant ag such that

ReZa,,ggs,s, aon,, V. €2 V... 80" €RY

i,j=1

1
Rec() > a0+ 2 max | |bi (x)| /a0, V €.

Let G be a convex quadrilateral. A quadrilateral grid by connecting the equidistant mesh points of the opposite edges of
G is called a strong regular division of G. Let G be a convex hexahedral. A three-dimensional partition by connecting the cor-
responding strong regular division nodes of the opposite faces is called a strong regular division of G. For two-dimensional
case in strong regular division there are two independent grid parameters which are determined by the numbers of the
equidistant mesh points of the opposite edges. For three-dimensional case there are three independent grid parameters in
strong regular division.

Let 2 = U{ .Q where 2 ,is a convex quadrilateral (d =2) or convex hexahedron (d = 3), and the initial partition
satisfies the compatl le condition and has no interior cross points. Then for each £2, we construct such a strong regular
partition 7 _ that 7, = U; 1T is a piecewise strongly regular partition of the domain £2.

Note that the partition T has d mesh parameters h é (z=1,...,d) while the partition 7; only has ;| (| <x
independent mesh parameters denoted by hj, .. h‘ Let hg = maxi <ig h;.

When §2 ,is a quadrilateral, h ; is the side- length of an element on 92 ; When 2 is a hexahedron, h ; is the edge-
length of an element on 9£2 é Since 1, is a piecewise strongly regular partition, there exist constants C; and C, independent
of the mesh diameter h such that

x d)

C1h < hg < Cah.
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orthonormal basis for R(E) and let (p;‘ = E*@j (see [3, p. 691]). From [3], we can see that (4.8) and (4.9) have the equivalent
operator forms (2.1) and (2.2), respectively, |T — Tp|| — 0 (h — 0) and (4.10) is equivalent to the operator form T* 4= u* 4

Let Ax be the F-th eigenvalue of (4.8) with algebraic multiplicity o= Mgl = = Ay wh )Am,h = (1.'_2’;:,;?1 A;}l)*l.
Based on [27] we obtain the following: }

Theorem 4.2. § -":~3t hg ; he c‘ejﬁcﬁtd‘f diffarftia‘ ‘,erq‘r are ece 4§ . “t h: ajj € (]‘[{(Fl CS(EZA)) N Loo(£2), b; €
(B C5(2 ) N1 0o(2), ¢ € ([T C4(82 ) NLoo(2), K &pg (B ‘t%ggmfw(m./&*l e hg R(E) C ([T HO(R2 )N
H{($2). THE | here h“d‘ he a\a"x f i ex[i ﬁ ‘ft he err *f Ay p:

):]g]—, — Ax= iﬂlﬁ? + l?(hé),

i=1
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From (26) in [27] we have

a(To; = InT;. T*¢]) =b(Te; — InT o), ¢})

_Ezﬁhzifp(x)gojazw]d + 9 (hd).

J_1zl

Substituting the above two equalities into (4.16), together with (4.15)
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=

Fig. 1. (1, hy, h3).
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hio

Fig.2. (U0 iy, Fi3).

haf F
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>
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o] e

]

h12

N1

hii

Fig.4. (11,05, ).

Example 5.2. Consider the non-symmetric convection diffusion problem:

_AJ —f-b-VJ :)‘i’ in §2, J =0, onas2, (5.1)

where b = (1, 1), and §2 is a square (0, 1) x (0, 1).
We know that the multiplicities of the eigenvalues A» = A3 and A5 = Ag are all equal to 2, and

Ay = A3~ 49.848022005, As =X 2 99.196044011.

We make a uniform square partition for §£2 and use the conforming bilinear element to compute the approximate eigen-
values corresponding to (5.1). We decompose £2 as: §2 = £21 U 2, where 27 =[0,1] x [0, 3] and £2; =[0,1] x [$,1]. Let
T be the partition on ﬁ»g(d: 1,2).

Note that 71, has 2 mesh parameters hq11 and hq2, T2, has 2 mesh parameters hy; and hyp, but 7, only has 3 indepen-

dent mesh parameters h1 = hi1, hy = hiz = hyy and h3 = hyy (see Figs. 1-4). Let hg = max1<i<3 hi.

Let App, Al, ,1 Al(,zg and AG) be the approximate agenvalues correspondmg to the bilinear finite element approximations
on the partition with mesh parameters (h1 ha, h3), ( 7 ,ho, h3), (h1, ,h3) and (h1, ha, 3) respectively. Let A,«h _( (1
N7 K=2,5) A= GG + o

.h 4+1,h

o
—L)~1(i=1,2,3, £=2,5). We denote the approximate eigenvalues obtained by

)»r+1 h

Algorithm 2 by

4.
)”r](?h = §)L](,, - §)¥l’h (f=2,5),
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Table 2

The numerical eigenvalues ):',fh obtained by Algorithm 2, and X?fh obtained by Algorithm 3 (K=2,5).
ho 8 i £ o 5
Aan 51.951541 50.365882 49.976951 49.880220 49.856069
i A 51.544287 50.267955 49.952725 49.874180 49.854560
i 51.148823 50.170812 49.928548 49.868143 49.853051
ey 49.837329 49.847307 49.847976 49.848019
i, 49.795240 49.844650 49.847811 49.848011
Asn 109.81232 101.77789 99.835956 99.355663 99.235926
i A2 107.57658 101.27850 99.715022 99.325675 99.228444
i 105.64870 100.79796 99.595254 99.295760 99.220967
e, 99.099747 99.188645 99.195565 99.196014
i, 98.298853 99.139610 99.192529 99.195824

and the approximate eigenvalues by Algorithm 3 by
3 4 4
> 8 () 2
Af, = Ay — | =x3—=1]A £=2,5).
l?‘?h Z 3k <3 ) kh o ( )
j=1
Numerical results listed in Table 2 are in accordance with our theoretical analysis.

Remark 5.1. We can see from Example 5.2 that the numerical eigenvalue by the splitting extrapolation has the same ac-
curacy with that by the Richardson extrapolation. The splitting extrapolation method needs to solve four subproblems. The
number of nodes of the maximum subproblem, which is illustrated in Fig. 3, are just a half of the number of nodes on the
fine grid of the Richardson extrapolation method. When considering Example 5.2 in £2 C R3, we make a split £2 = £2; U £25.
From [27] we know that, to obtain the same accuracy, the splitting extrapolation method needs to solve five subproblems,
and the number of nodes of the maximum subproblem is just a quarter of the number of nodes on the fine grid of the
Richardson extrapolation method. The higher the dimensions are, the more superior the splitting extrapolation method
performs.

6. Concluding remarks

This paper discusses the extrapolation of numerical eigenvalues by finite elements for differential operators. Theorem 3.1
in the paper provides a new error expansion. Using this error expansion we solve the extrapolation for multiple eigenvalues,
which was once thought to be a complicated work. For instance, in the paper we achieve the extrapolation of nonconforming
finite elements for multiple eigenvalues and the splitting extrapolation based on domain decomposition of conforming finite
elements for multiple eigenvalues (including the case that the ascent is larger than 1) of non-selfadjoint differential operator.
Although the proof of Theorem 3.1 is just a minor modification of that of Osborn (see Theorem 3 of [29], Theorem 7.2 of [3]),
Theorem 3.1 develops the spectral approximation theory and is a general result.
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